Глава 10. Сопоставление с образцом

10.1. Простейший пример
  10.1.1. Имеется последовательность символов x[1]..x[n]. Определить, имеются ли в ней идущие друг за другом символы "abcd". (Другими словами, требуется выяснить, есть ли в слове x[1]..x[n] подслово…
10.2. Повторения в образце - источник проблем
  10.2.1. Можно ли в предыдущих рассуждениях заменить слово "abcd" на произвольное слово? Решение. Нет, и проблемы связаны с тем, что в образце могут быть повторяющиеся буквы. Пусть, например, мы ищем…
10.3. Вспомогательные утверждения
  Для произвольного слова X рассмотрим все его начала, одновременно являющиеся его концами, и выберем из них самое длинное. (Не считая, конечно, самого слова X.) Будем обозначать его l(X). Примеры:…
10.4. Алгоритм Кнута - Морриса - Пратта
Алгоритм Кнута - Морриса - Пратта (КМП) получает на вход слово X = x[1]x[2]...x[n] и просматривает его слева направо буква за буквой, заполняя при этом массив натуральных чисел l[1]..l[n], где…
10.5. Алгоритм Бойера - Мура
  Этот алгоритм делает то, что на первый взгляд кажется невозможным: в типичной ситуации он читает лишь небольшую часть всех букв слова, в котором ищется заданный образец. Как так может быть? Идея…
10.6. Алгоритм Рабина
Этот алгоритм основан на простой идее. Представим себе, что в слове длины m мы ищем образем длины n. Вырежем окошечко размера n и будем двигать его по входному слову. Нас интересует, не совпадает ли…
10.7. Более сложные образцы и автоматы
  Мы можем искать не конкретно слово, а подслова заданного вида. Например, можно искать слова вида a?b, где вместо ? может стоять любая буква (иными словами, нас интересует буква b на расстоянии…