Нуклеиновые кислоты

Нуклеиновые кислоты - это высокомолекулярные органические соединения, имеющие первостепенное биологическое значение. Впервые они были обнаружены в ядре клеток (в конце XIX в.), отсюда и получили соответствующее название (нуклеус - ядро). Нуклеиновые кислоты хранят и передают наследственную информацию.


Существует два вида нуклеиновых кислот: дезоксирибонуклеиновая (ДНК) -и рибонуклеиновая кислота (РНК). Основное местоположение ДНК - ядро клетки. ДНК обнаружена также в некоторых органоидах (пластиды, митохондрии, центриоли). РНК встречаются в ядрышках, в рибосомах и цитоплазмеклеток.

Молекула ДНК состоит из двух спирально закру ченных друг возле друга нитей. Ее мономерами служат нуклеотиды. Каждый нуклеотид - химическое соединение, состоящее из трех веществ: азотистого основания, пятиатомного сахара дезоксирибозы и остатка фосфорной кислоты. Существуют четыре вида азотистых оснований: аденин (А), тимин (Т), гуанин (Г) и цитозин (Ц), которые в молекуле ДНК образуют четыре вида нуклеотидов: адениловый, тимидиловый, гуаниловый и цитидиловый.


Схема строения нуклеотида

Азотистые основания в молекуле ДНК соединены между собой неодинаковым количеством водородных связей. Аденин - тимин соответствуют друг другу по пространственной конфигурации и образуют две водородные связи. Точно так же соответствуют по своей конфигурации молекулы гуанина и цитозина, они соединяются тремя водородными связями. Способность к избирательному взаимодействию аденина с тимином, а гуанина с цитозином, основанная на особенностях расположения в пространстве атомов этих молекул, называется комплементарностью (дополнительностью). В полинуклеотидной цепочке соседние нуклеотиды связаны между собой через сахар (дезоксирибозу) и остаток фосфорной кислоты. В молекуле ДНК последовательно соединены многие тысячи нуклеотидов. Молекулярная масса этого соединения достигает десятков и сотен миллионов.

ДНК называют веществом наследственности. Биологическая наследственная информация зашифрована (закодирована) в молекулах ДНК с помощью химического кода. В клетках всех живых существ один и тот же код. В его основе лежит последовательность соединения в нитях ДНК четырех азотистых оснований: А, Т, Г, Ц. Различные комбинации трех смежных нуклеотидов образуют триплеты называемые кодонами. Последовательность кодонов в нити ДНК в свою очередь определяет (кодирует) последовательность расположения аминокислот в полипептидной белковой цепи. Для каждой из 20 аминокислот, из которых клетки строят все без исключения белки данного организма, существует свой специфический кодон, причем соседние триплеты не перекрываются: в процессе считывания информации с молекулы ДНК азотистые основания одного кодона никогда не включаются в состав другого-считывается тройка тех нуклеотидов и в той последовательности, в какой они представлены в данном конкретном кодоне. Каждому триплету соответствует одна из 20 аминокислот.

Из четырех азотистых оснований (Г, Ц, А, Т) в каждый триплет входят только три в различном сочетании:

Г-А-Т, Ц-Г-А, А-Ц-Т, Г-Ц-Г, Т-Ц-Т и т. д. Таких неповторяющихся сочетаний может быть 4х4х4=64, а число аминокислот равно 20.

В результате некоторые аминокислоты кодируются несколькими триплетами. Эта избыточность кода имеет большое значение для повышения надежности передачи генетической информации. Например, аминокислоте аргинину соответствуют триплеты ГЦА, ГЦГ, ГЦТ, ГЦЦ. Понятно, что случайная замена третьего нуклеотида в этих триплетах никак не отразится на структуре синтезируемого белка. В приведенной ниже схеме условно показана последовательность пяти триплетов-кодонов на небольшом участке нити ДНК. Чередование отдельных нуклеотидов в одной нити ДНК может варьировать как угодно, но последовательность их в другой нити должна быть комплементарна ей, например:

1-я нить ГАТ____ ЦГА____АЦТ____ГЦГ____ТЦТ и т.д.

2-я нить ЦТА____ГЦТ____ТГА____ЦГЦ____ АГА и т. д.

Клетка обладает необходимым механизмом самоудвоения (ауторепродукции) генетического кода. Процесс самоудвоения идет поэтапно: вначале с помощью ферментов разрываются водородные связи между азотистыми основаниями. В результате этого одна нить ДНК отходит от другой, затем каждая из них синтезирует новую путем присоединения комплементарных нуклеотидов, находящихся в цитоплазме. Поскольку каждое из оснований в нуклеотидах может присоединить другое основание только комплементарное себе, то воспроизводится точная копия "материнской" молекулы ДНК. Иными словами, каждая нить ДНК служит матрицей, а ее удвоение называется матричным синтезом. Матричный синтез напоминает отливку на матрице монет, медалей, типографского шрифта и т. п., при котором затвердевшая отливка должна быть точной копией исходной формы. Поэтому в живых клетках в результате удвоения новые молекулы ДНК имеют ту же структуру, что и первоначальные: одна нить была исходной, а вторая собрана заново.

Так как новые молекулы ДНК имеют ту же структуру, что и исходные, в дочерних клетках сохраняется та же наследственная информация. Однако в случае перестановки или замены нуклеотидов на другие либо полного их выпадения в любом участке ДНК возникшее искажение будет в точности скопировано в дочерних молекулах ДНК. В этом и заключается молекулярный механизм изменчивости: любое искажение наследственной информации на участке ДНК в процессе самокопирования будет передаваться от клетки к клетке, из поколения в поколение


Рис. Редупликация ДНК .

Другое важное свойство молекул ДНК - способность синтезировать на отдельных участках разъединенных нитей рибонуклеиновые кислоты. Для этого используются ферменты (РНК-полимераза) и требуются за

траты энергии. ДНК передает на нить РНК свой порядок чередования нуклеотидов по принципу матричного синтеза. Этот процесс называетсятранскрипцией РНК-однонитевая молекула, она значительно короче ДНК. Каждый нуклеотид в ней состоит из пятиатомного сахара рибозы, остатков фосфорной кислоты и азотистого основания. Их здесь также четыре: аденин, гуанин, цитозин, но вместо тимина присутствует близкий ему по строению урацил (У), комплементарный аденину.


Схема строения рибонуклеотида

Выделяют РНК информационную (иРНК), транспортную (тРНК) и рибосомную (рРНК). При этом иРНК снимает информацию с участка молекулы ДНК и затем мигрирует к рибосомам, расположенным в цитоплазме клетки, а тРНК доставляет аминокислотные остатки к рибосомам. Нить тРНК короткая и состоит всего лишь из 70-80 нуклеотидов. Один из участков тРНК содержит триплет, к которому присоединяется одна из 20 аминокислот. Для каждой аминокислоты имеется своя тРНК. Присоединение аминокислоты активируется специфическим ферментом, благодаря чему тРНК "узнает" ту или иную аминокислоту. Второй участок тРНК имеет триплет, комплементарный одному из триплетов иРНК; этот триплет на тРНК называется антикодоном. В конечном счете аминокислота занимает свое место в полипеп-тидной цепочке в соответствии с информацией на иРНК, которая распознается благодаря комплементарности антикодона тРНК кодону иРНК.

рРНК входит в состав рибосом, образуя с белками рибосомные тельца, являющиеся местом синтеза белка. Она вступает также в связь с иРНК, и этот комплекс осуществляет синтез белка.

Рис. Соотношение последовательности нуклеотидов в цепях ДНК и синтезируемой на ней иРНК

Сравнительная характеристика ДНК и РНК (Т.Л. Богданова. Биология. Задания и упражнения. Пособие для поступающих в ВУЗы. М.,1991)

Признаки

ДНК

РНК

Местонахождение в клетке

Ядро, митохондрии, хлоропласты

Ядро, рибосомы, цитоплазмы, митохондрии, хлоропласты

Местонахождение в ядре

Хромосомы

Ядрышко

Строение макромолекулы

Двойной неразветвленный линейный полимер, свернутый правозакручен-ной спиралью

Одинарная полинуклеотидная цепочка

Мономеры

Дезоксирибонуклеотиды

Рибонуклеотиды

Состав нукле-отида

Азотистое основание (пу-риновое - аденин, гуанин, пиримидиновое -тимин, цитозин); дезоксирибоза (углевод); остаток фосфорной кислоты

Азотистое основание (пу-риновое - аденин, гуанин. пиримидиновое - урацил, цитозин); рибоза (углевод); остаток фосфорной кислоты

Типы нуклео-тндов

Адениловый (А), гуа-ниловый (Г), тимидиловый (Т), цитидиловый (Ц)

Адениловый (А),гуани-ловый (Г), уридиловый (У), цитидиловый (Ц)

Свойства

Способна к самоудвоению по принципу комп-лементарности (редупликации): А=Т, Т=А, Г=Ц, Ц= Г Стабильна

Не способна к самоудвоению. Лабильна

Функции

Химическая основа хромосомного генетического материала (гена); синтез ДНК; синтез РНК; информация о структуре белков

Информационная(иРНК) - передает код наследственной информации о первичной структуре белковой молекулы;рибосомальная (рРНК) - входит в состав рибосом; транспортная (тРНК) - переносит аминокислоты к рибосомам; митохондриальная ипластидная РНК - входят в состав рибосом этих органелл

Другие записи

10.06.2016. Сравнение растительной и животной клетки
Общие признаки 1. Единство структурных систем - цитоплазмы и ядра. 2. Сходство процессов обмена веществ и энергии. 3. Единство принципа наследственного кода. 4. Универсальное мембранное строение. 5.…
10.06.2016. Прокариотическая клетка
К прокариотам относят бактерии и сине-зелёные водоросли (цианеи). Наследственный аппарат прокариот представлен одной кольцевой молекулой ДНК, не образующей связей с белками и содержащей по одной копии…
10.06.2016. Процесс фотосинтеза
ПОЯСНЕНИЯ К СХЕМЕ ФОТОСИНТЕЗ Процесс фотосинтеза осуществляется в хлоропластах в два этапа. В гранах (тилакоидах) протекают реакции, вызываемые светом.- световые, а в строме - реакции, не связанные…
10.06.2016. Раздражимость и движение клеток
Под раздражимостью и возбудимостью понимают присущую всему живому способность реагировать на действие какого-либо раздражителя: на изменения химического состава среды, температуры, на действие света,…
10.06.2016. Клеточная теория
Изучение клетки связано с открытием и использованием микроскопа и улучшением техники микроскопирования. В 1665 г. английский физик Р. Гук на тонком срезе пробки рассмотрел крошечные "ячейки", которые…