Закон гомологических рядов Н.И.Вавилова и его значение в биологии

Рукопись, датированная 20 февраля 1957 г.

Работа Н.И.Вавилова "Закон гомологических рядов в наследственной изменчивости" была опубликована в 1920 г. на русском языке в "Трудах 3-го съезда по растениеводству" и в 1922 г.-на английском (Vavilov, 1922). Как известно, установление этого закона сопровождалось открытием предсказанной Н.И. Вавиловым на основе этого закона безлигульной формы ржи на Памире. Это открытие некоторыми лицами сравнивалось с открытием новых элементов на основе периодической системы Д.И. Менделеева. Сразу после опубликования работы наблюдалось большое оживление в биологической литературе: значительное число ученых выпустило работы, показывающие приложимость этого закона к разным группам растений и животных; самим Н.И. Вавиловым и его последователями были сделаны некоторые выводы общебиологического характера, в частности, в связи с новым подходом к загадкам миметизма. В дальнейшем этот энтузиазм ослабел.

Сам Н.И.Вавилов, будучи образованным и добросовестным биологом, нисколько не претендовал на то, что он первый сформулировал положение о гомологической изменчивости. Он указывал многих авторов, в частности самого Ч. Дарвина, в свою очередь называвшего Уолша (В.D. Walsh), установившего для насекомых в естественном состоянии закон "равнозначащей изменчивости" (law of equable variability). Ч. Дарвин (1952, с. 192) так формулирует это положение. "Виды, между собой различные, представляют аналогичные изменения, так что разновидность известного вида часто приобретает особенности, свойственные сродному виду, или возвращается к признакам более раннего предка"92.

Из этого определения, как и из последующего текста, ясно:

1. это положение, по мысли Дарвина, не претендовало на звание строгого закона, так как в нем небыло обязательности и не были указаны условия преимущественности;

2. оно распространялось только на виды одного рода; как толковали это положение предшественники Дарвина по этому вопросу-Уолш, Ноден и другие, остается неясным;

3. аналогичными признаками в собственном смысле слова он считает те, которые возникают самостоятельно у близких видов, что он считает естественным в силу происхождения всех видов одного рода от общего предка: от них он отличает возвратные признаки-восстановление утраченных.

Правда, он оговаривается, что так как нам неизвестны общие предки наших естественных групп, то мы не в состоянии отличить признаки аналогичные от признаков возвратных. Кроме того, Дарвин считает (с. 194), что "признаки, происходящие исключительно в силу аналогичных изменений, будут, по всей вероятности, несущественными, так как сохранение всех признаков, важных по отношению к отправлениям организма, будет ограждаться естественным отбором соответственно различному образу жизни видов".

Эта последняя оговорка очень важна: Дарвин, как честный ученый, зарегистрировал этот закон аналогичной изменчивости. но от него не укрылась враждебность этого закона его пониманию эволюции: дивергенции под руководством естественного отбора. Ведь возникновение аналогичных изменений во многих или во всех видах одного рода - это параллельная, а не дивергентная эволюция. Ясно, что если бы закон аналогичной изменчивости имел универсальное значение, то крайне ценимое самим Дарвином положение о господстве дивергенции в эволюции получило бы сильнейший удар.

Большое изумление вызывает у Дарвина и факт проявления признаков, исчезнувших за много поколений, так как Дарвин еще придерживался взгляда на наследственность, как на нечто, связанное с "кровью". Он пишет (с. 193): "После 12 поколений доля крови, если позволительно будет употребить это ходячее выражение, одного потомка будет 1/2048, и тем не менее, по общераспространенному мнению, этот остаток чужой крови выражается стремлением к возврату".

Ясно, что сам Дарвин и его ближайшие последователи потому не придавали большого значения этому закону, что он не гармонировал как с общей системой дарвиновских взглядов на эволюцию, так и с господствовавшими тогда взглядами на наследственность.

Однако факты систематики организмов постепенно приводили ко все большему числу высказываний, возрождавших забытые многими слова Дарвина и его предшественников по данному вопросу. При этом ясно было, что сформулированное Дарвином положение вовсе не касается только видов одного рода, а распространяется и на более высокие таксономические категории и что оно имеет гораздо большие претензии на закон, чем думал Дарвин. Некоторые авторы отмечали сходство системы организмов (конечно, в относительно узких рамках) со справедливо прошумевшей периодической системой химических элементов Д.И. Менделеева, и наш талантливый зоолог В.М. Шимкевич (Schimkewitsch, 1906) так озаглавил одну из своих работ: "О периодичности в системе пантопод", расположив роды этих животных в таблицу, внешне напоминающую периодическую систему. На самом деле сходство не так велико, и систему, предложенную Шимкевичем для пантопод, правильнее назвать решетчатой, а не периодической. Полезно при этом вспомнить, что еще Линней указывал, что в системе организмов мы имеем решетчатое расположение элементов. Сам В.М. Шимкевич, будучи убежденным дарвинистом, не придавал сколько-нибудь существенного значения обнаруженной им закономерности.

Всякому, много занимающемуся определением любых организмов, не может не броситься в глаза неудовлетворительность определительных таблиц. Со времен Ламарка они все строятся в форме дихотомических таблиц, т. е. как бы в виде деревцов с большим числом разветвлений. Однако форма наших определительных таблиц отнюдь не является наиболее экономной, из-за этого возникает много ошибок в определении. Именно определяющий, сделав ошибку в выборе антитез, дальше получает как бы подтверждение тому, что он стоит на правильном пути, так как в дальнейшем встречает такие противопоставления, которые соответствуют признакам определяемого им объекта.

Н.И.Вавилову и принадлежит поэтому бесспорная заслуга, что он не просто извлек из забвения старое положение Дарвина, но сделал крупный шаг вперед по пути познания одной из глубоких закономерностей, лежащих в основе формообразования организмов. По сравнению с Дарвином понимание Вавиловым характеризуется следующими особенностями.

1. Закон приложим не только к близким видам одного рода, но и к родам семейств, не только близких, но и отдаленных.

2. Этому закону придается такая универсальность, что по наличию ряда изменчивости в одном роде или в семействе можно предвидеть соответствующий ряд в другом роде или семействе: это и позволило Н.И. Вавилову сделать удачный прогноз.

3. Н.И. Вавилов и его сотрудники не задумались сделать дальнейшие выводы из возрожденного на повышенном основании закона: они указали, что многие случаи миметизма прекрасно истолковываются как проявления этого закона. В одной из работ имеется прекрасная цветная таблица, показывающая великолепные случаи "миметизма" в семействе бобовых. С полным знанием дела использует закон Вавилова выдающийся знаток проблемы миметизма, талантливейший критик банального дарвинистического толкования этой проблемы австрийский ученый Ф. Гейкертингер (Heikertinger, 1954).

В этой превосходной посмертной сводке Гейкертингер прекрасно показывает, что огромное число случаев миметизма только потому фигурирует как таковое, что оба партнера занимают тот же ареал. Но огромное число случаев "псевдомиметизма" просто не регистрируется, хотя можно привести большое число примеров, где представители одного семейства "подражают" представителям многих других семейств. Гейкертингер приводит в своей книге (с. 153) список видов семейства чернотелок (Tenebrionidae), которые "подражают" видам семейств - Carabidae, Dytiscidae, Elateridae, Silphidae, Chrysomelidae (подсемейства Chrysomelinae, Cassidinae), Cerambycidae, Curculionidae, Scarabeidae, Passalidae, Lucanidae, Languridae.

Могу привести из личного опыта, что при просмотре богатых коллекций Зоологического института АН СССР по подсемейству земляных блошек (Halticinae) я наткнулся на мелких жучков, которых я без всякого сомнения отнес к жужелицам подсемейства Bembidiini и потому передал специалисту по жужелицам О. Л. Крыжановскому, который их тоже принял без возражения, но вернул их на следующий день, так как при очень внимательном рассмотрении они оказались все-таки земляными блошками, а не жужелицами. Но среди земляных блошек (наибольшее разнообразие, конечно, дает Южная Америка) есть виды, поразительно напоминающие не только представителей соседнего подсемейства Galerucinae, но и жуков семейств Curculionidae, Cerambycidae, Helodidae (некоторые виды этого подсемейства были описаны как блошки).

По-видимому, эти случаи псевдомиметизма совершенно не зарегистрированы, так как о них только вскользь упоминает Гейкертингер (1917, с. 122), который, как известно, был не только знатоком литературы по миметизму, но и знатоком систематики земляных блошек.

То возражение, которое часто приводится защитниками дарвинистического толкования миметизма, что слишком часто миметические виды водятся вместе, парируется наличием географических закономерностей в изменчивости организмов: в этой области Вавилов сделал весьма существенный вклад в науку. В его работе "Ботанико-географические основы селекции" (1935) есть специальный раздел "Правильности географического распределения сортового разнообразия культурных растений". Приведу только два примера. В Китае аккумулируется мировое разнообразие голозерного ячменя, голозерного проса, крупно-зернового голого овса. Только на Памире найдены безлигульные формы ржи, мягкой пшеницы и карликовой пшеницы (твердой пшеницы - на Кипре).

В общем можно сказать, что закон гомологических рядов открывал широкие перспективы по изучению закономерностей, лежащих в основе эволюции. В этом же направлении двигалась и мысль нашего выдающегося ученого Л.С. Берга (1922), палеонтолога Д.Н. Соболева (1924) и гистолога А.А. Заварзина (1923). Несмотря на наличие ряда ошибок у всех этих авторов, сопутствующих каждому новому течению в науке, и разнообразие подходов к биологическим проблемам, общим выводом всех их было то, что морфологические закономерности, существование которых вынужден был допускать и Ч. Дарвин, играют в эволюции органического мира несравненно большую роль, чем это принимает ортодоксальный дарвинизм.

Чем же объяснить то, что это направление в науке сейчас, можно сказать, еле теплится (даже в мировой литературе)? Не касаясь чисто внешних причин, могу указать следующие.

1. Сам Вавилов вскоре после формулировки своего закона оказался во главе прикладной ботаники. Здесь он проявил в полной мере свои блестящие организаторские способности и вложил всю свою большую душу в это дело. Только сейчас мы можем полностью оценить все величие его работы и как велика потеря вследствие его безвременной кончины. Но разнообразная административная работа, многочисленные экспедиции и прикладное направление его главных работ в этот период не могли не сказаться на снижении деятельности в том теоретическом секторе работы, который не сулил непосредственного практического приложения.

2. За период двадцатых и последующих годов огромное количество ученых было отвлечено в область генетики. Результаты в этой области достигнуты блестящие, но они также отвлекли внимание биологов от тех теоретических проблем, которые недоступны в настоящее время экспериментальной проверке и не отличаются той точностью, которой достигла генетика. Как крайнее выражение этой переоценки экспериментального метода, можно вспомнить слова В. Бэтсона, что палеонтология вообще некомпетентна в вопросах о факторах эволюции, так как в палеонтологии эсперимент отсутствует.

3. Видимо, для многих генетиков "периодичность" в систематике объяснялась гибридизацией, и, вероятно, многие из сторонников Н.И. Вавилова считали, что закон гомологических рядов исчерпывается той "решеткой", которая получается в результате скрещивания. Введен даже термин "ретикулатная" (т. е. сетчатая) эволюция. Однако при этом упускается из виду, что, как уже указывал Вавилов, сетчатость проявляется и на таком таксономическом уровне, на котором, по крайней мере по имеющимся данным, гибридизация невозможна. Еще важнее, пожалуй, то, что параллелизм распространяется и на, так сказать, "идейные" признаки, которые никак не могут быть выведены из единой морфологической или генетической основы. Чтобы дать понять, что это значит, приведу из обширнейшего запаса фактов этого рода только один пример: стридуляционные органы и органы слуха кузнечиков и саранчевых.

4. Несомненно, что закон гомологических рядов является только началом выяснения номогенетического компонента эволюции. Это показывает, что здесь, видимо, не простые пробелы в наших знаниях, а действительное несоответствие закона с реальным миром. Крайнее разнообразие организмов, продолжающееся новоописание, отсутствие сколько-нибудь удовлетворительных сводок по большинству групп отвлекают внимание систематиков от теоретической работы. В области теории работы крайне редки. Недостаточно ясно осознается различие между комбинативной и периодической системами (см.: Любищев, 1923).

5. Генетика первоначально развивалась, и это было вполне естественно, независимо от дарвинизма. Но вскоре выяснилось, что критическая мысль должна затронуть самые основы биологии и что эта работа по перестройке основ биологии является исключительно сложной и трудной. А при наличии той переоценки экспериментального метода, о которой уже говорилось, проявилась тенденция к "примирению" с дарвинизмом у тех ученых, как, например, Иоганнсен, которые первоначально резонно критиковали дарвинизм. У сторонников же точного мышления теоретическая мысль пошла по разработке методов приложения математики, к нейтральным областям систематики и теории эволюции. Я имею в виду работы Вольтерра и др. по математической теории борьбы за существование, Р. Фишера, Д. Холдена, С. Райта и других по математической теории естественного отбора и, наконец, что имеет особенное значение для систематики, по разработке методики комплексных признаков или дискриминантных функций, связанной опять-таки с именем Р. Фишера. Это последнее направление имеет исключительно важные методические и практические перспективы.

6. Закон гомологических рядов оказался, таким образом, лишенным разработанной общебиологической основы, он не имел "объяснений". Как уже указано, это возражение формально совершенно справедливо, и закон гомологических рядов для сколько-нибудь полного понимания требует весьма радикального пересмотра наших общебиологических воззрений. Но, беря в качестве методологического руководства историю точных наук, мы видим, что требование "объяснения" часто служило тормозом на пути самых блестящих научных достижений. Великому Ньютону говорили, что его принцип всемирного тяготения непонятен. Он отвечал примерно так: "Несомненно, нелепо считать, что тело может действовать там, где его нет, но все происходит так, как если бы такое действие имело место...".

После Эйнштейна теория тяготения сделала большой шаг вперед (общую теорию относительности часто называют теорией тяготения), но,  насколько мне известно, и сейчас там далеко не все ясно. Нечто подобное случилось и со знаменитыми уравнениями электромагнитной теории света К. Максвелла. Наконец, беря наиболее близкий пример, укажу, что в момент своего появления периодическая система элементов Д. И. Менделеева была совершенно "непонятной". Известно, что когда один из предшественников Д. И. Менделеева, Ньюлендс, делал доклад о первой несовершенной попытке найти связь свойств элементов с атомным весом в научном химическом обществе, то председатель, известный химик, сделал такое "убийственное" возражение: "А вы не пробовали находить связь свойств элементов с алфавитным расположением их названий?". Сейчас мы знаем, что под периодическую систему подведено весьма прочное основание, но отсутствие такого основания не дает нам права отвергать теорию из-за ее "непонятности".


Мы можем подвести итог. Работа Н. И. Вавилова по закону гомологических рядов представляет собой очень крупный шаг по пути проникновения в закономерности систематики и эволюции. Однако сравнение в смысле высоты научного достижения с периодической системой Менделеева было бы неправильно. Система Менделеева представляет уже весьма совершенное решение проблемы систематизации химических элементов, хотя, конечно, далеко не идеальное. Попытка же Вавилова, как ни почтенна она сама по себе, представляет собой только маленький отрезок грандиозной проблемы биологической системы. Здесь совершенная несоизмеримость задач. Биологическая систематика в своем полном здании неизмеримо труднее химической как по подавляющему количественному и качественному многообразию форм, так и по осложнению проблемы системы проблемой органической целесообразности, отсутствующей в химической систематике. Мы знаем, что очень большое число умнейших и талантливейших биологов искренне думают, что вся морфология и физиология организмов подчинена проблеме целесообразности. Заслуга Н.И. Вавилова и заключается кроме всего прочего, в том, что он с определенной точки зрения указал на самостоятельность систематики. В этом отношении он оказался выше не только своих противников, но и большинства своих последователей и почитателей, которые часто выдвигают, например, миметизм как одно из бесспорнейших доказательств теории естественного отбора, забывая, что таким высказыванием они обнаруживают или незнакомство, или игнорирование весьма обоснованного мнения Н.И. Вавилова.

ЛИТЕРАТУРА

Берг Л.С. Номогенез. Пг., 1922, с. I-VIII. 1-306. (Тр. Геогр. ин-та; Т. 1).
Вавилов Н.И. Закон гомологических рядов в наследственной изменчивости. Саратов, 1920. 16 с.
Вавилов Н.И. Ботанико-географические основы селекции. - В кн.: Теоретические основы селекции. М., 1935, т. 1, с. 17-74.
Дарвин Ч. Происхождение видов. М.: Сельхозгиз, 1952. 483 с.
Заварзин А.А. Параллелизм структур как основной принцип морфологии. - Изв. Биол. н.-и. ин-та при Перм. ун-те, 1923, т. 2, вып. 4, с. 135-140.
Любищев А.А. О форме естественной системы организмов. - Изв. Биол. н.-и. ин-та при Перм. ун-те, 1923, т. 2, вып. 4, с. 99-100,
Соболев Д.Н. Начала исторической биогенетики. Симферополь: Госиздат Украины, 1923. 203 с.
Heikertinger F. Das Ratsel der Mimikry und seine Losung. Jena: G. Fischer, 1954. 208 S.
Schirnkewitsch W. Uber die Periodizitat in dem System der Pantopoda. - Zool. Anz., 1906, Bd. 30, N 1/2, S. 1-22.
Vavilov N.I. The law of homologous series in variation.-J. Genet., 1922, vol. 12, N 1, p. 47-89.

Другие записи

10.06.2016. Конверсия гена
Московский государственный университет им. М.В. ЛомоносоваВВЕДЕНИЕКонверсия гена, которой посвящена эта статья, является биологическим процессом, играющим важную роль и в эволюции живых организмов, и в…
10.06.2016. Запрограммированные перестройки генетического материала в онтогенезе
Московский государственный университет им. М.В. ЛомоносоваВВЕДЕНИЕОдна из глобальных проблем современной биологии - регуляция работы генов - сложна и многогранна из-за необычайного разнообразия участвующих…
10.06.2016. Геномная эра
В конце 1980-х годов в США и СССР начались работы по геному человека (геном — совокупность всех генов и межгенных участков любого организма), вскоре возникли национальные программы по изучению генома во…
10.06.2016. Гены гениальности
Гений – это на 99 процентов труд до изнеможения и на один процент игра воображения.Томас ЭдисонИзучение биографий и патографий гениев всех времен и народов приводит к неумолимому выводу: гениями рождаются.В.П.…
10.06.2016. Генетические структуры как источник и приёмник голографической информации
Институт проблем управления РАН, Москва.Живое и Неживое имеют общие характеристики информационно-голографического характера. Это связано с фундаментальной способностью когерентных физических полей интерферировать…