Третий закон термодинамики

1. Первый и второй законы термодинамики не позволяют определить значение S0 энтропии системы при абсолютном нуле температуры (T = 0°К). В связи с этим оказывается невозможным теоретический расчет абсолютных значений энтропии,изохорно-изотермного и изобарно-изотермного потенциалов системы, а также константы равновесия.
2. На основании обобщения экспериментальных исследований свойств различных веществ при сверхнизких температурах был установлен закон, устранивший указанную трудность и получивший название принципа Нернста или третьего закона термодинамики. В формулировке Нернста он гласит: в любом изотермическом процессе, проведенном при абсолютном нуле температуры, изменение энтропии системы равно нулю, т. е.
DS (T=0) = 0, S = S0 = const,

независимо от изменения любых других параметров состояния (например, объема, давления, напряженности внешнего силового поля и т. д.). Иными словами, при абсолютном нуле температуры изотермический процесс является также и изоэнтропийным.
3. Из третьего закона термодинамики следует, что для всех тел при T = 0°К обращаются в нуль теплоемкости Сp и СV и термодинамический коэффициент расширяемости a. Из него также вытекает вывод о невозможности осуществления такого процесса, в результате которого тело охладилось бы до температуры T = 0°К (принцип недостижимости абсолютного нуля температуры).
4. Принцип Нернста был развит Планком, предположившим, что S0 = 0: при абсолютном нуле температуры энтропия системы равна нулю. Физическое истолкование принципа Нернста в формулировке Планка дается в статистической физике.
Условие S0 = 0 при T = 0°К является следствием квантового характера процессов, происходящих в любой системе при низких температурах, и выполняется только для систем находящихся при Т = 0°К в состоянии устойчивого, а не метастабильного равновесия. На основании гипотезы Планка можно определить абсолютные значения энтропии системы в произвольном равновесном состоянии.

Другие записи

10.06.2016. Теплоемкость
1. Теплоемкостью (истинной теплоемкостью) C тела называется отношение элементарного количества тепла dQ, сообщенного телу в каком-либо процессе, к соответствующему изменению температуры тела:C=dQ/dTТеплоемкость…
10.06.2016. Работа
1. Необходимым условием совершения системой работы является перемещение взаимодействующих с ней внешних тел, т. е. изменение внешних параметров состояния системы. Элементарная работа dA, совершаемая системой…