Второй закон термодинамики

1. Первый закон термодинамики, выражающий всеобщий закон сохранения и превращения энергии, не позволяет определить направление протекания термодинамических процессов. Например, основываясь на этом законе, можно было бы пытаться построить вечный двигатель второго рода, т. е. двигатель, рабочее тело которого, совершая круговой процесс, получало бы энергию в форме тепла от одного внешнего тела и целиком передавало бы ее в форме работы другому внешнему телу.
2. Обобщение результатов многочисленных экспериментов привело к выводу о невозможности построения вечного двигателя второго рода. Этот вывод называется вторым законом термодинамики и имеет ряд формулировок, различных по форме, но эквивалентных по существу, в частности:
а) невозможен процесс, единственным результатом которого является превращение тепла, полученного от нагревателя, в эквивалентную ему работу;
б) невозможен процесс, единственным результатом которого является передача энергии в форме тепла от холодного тела к горячему.
3. Второй закон термодинамики указывает на существенное различие двух форм передачи энергии - теплоты и работы. Он утверждает, что процесс преобразования упорядоченного движения тела как целого в неупорядоченное движение частиц самого тела и внешней среды является необратимым. Упорядоченное движение может переходить в неупорядоченное без каких-либо дополнительных (компенсирующих) процессов, например при трении. В то же время обратный переход неупорядоченного движения в упорядоченное, или, как часто неточно говорят, «переход тепла в работу», не может являться единственным результатом термодинамического процесса, т. с. всегда должен сопровождаться каким-либо компенсирующим процессом. Например, при равновесном, изотермическом расширении идеальный газ совершает работу, которая полностью эквивалентна теплу, переданному газу нагревателем. Однако плотность газа при этом уменьшается, т. е. «превращение тепла в работу» не является единственным результатом рассматриваемого процесса. Тепловой двигатель, работающий по прямому циклу Карно, совершает работу, эквивалентную лишь части полученного от нагреватели тепла, так как остальная часть последнего отдается холодильнику, состояние которого вследствие этого изменяется. В холодильной машине тепло передается от холодного тела к горячему. Однако дли осуществления этого процесса необходим компенсирующий процесс совершения работы внешними телами.

Другие записи

10.06.2016. Теплоемкость
1. Теплоемкостью (истинной теплоемкостью) C тела называется отношение элементарного количества тепла dQ, сообщенного телу в каком-либо процессе, к соответствующему изменению температуры тела:C=dQ/dTТеплоемкость…
10.06.2016. Третий закон термодинамики
1. Первый и второй законы термодинамики не позволяют определить значение S0 энтропии системы при абсолютном нуле температуры (T = 0°К). В связи с этим оказывается невозможным теоретический расчет абсолютных…
10.06.2016. Удельная теплоёмкость
Вещество c, Дж/кг*C Алюминий 920 Вода 4200 Воздух 1000 Железо 460 Керосин 2100 Кирпич 880 Латунь 380 Лёд 2100 Медь 380 Никель 460 Олово 250 Песок 880 Платина 140 Ртуть 130 Свинец 140 Серебро 250 Спирт 2500 Сталь 500 Стекло 840 Цинк 380 Чугун 540 Эфир 3340
10.06.2016. Внутренняя энергия и энтальпия
1. Внутренней энергией U называется энергия системы, зависящая только от ее термодинамического состоянии. Для системы, нe подверженной действию внешних сил и находящейся в состоянии макроскопического покоя,…
10.06.2016. Работа
1. Необходимым условием совершения системой работы является перемещение взаимодействующих с ней внешних тел, т. е. изменение внешних параметров состояния системы. Элементарная работа dA, совершаемая системой…