Пойман «блуждающий ген»

О существовании так называемых «скачущих», или «блуждающих» генов – транспозонов – ученые начали подозревать около 50 лет назад. Но вот только недавно удалось застать «блуждающий ген», если можно так сказать, «на месте преступления». Группа американских генетиков открыла и описала трехмерную структуру фермента в бактерии, который отвечает за перенос скачущего гена из одного положения в цепи ДНК в другое.

Транспозоны являются одним из важнейших механизмов эволюции, обеспечивая необходимый уровень мутационной изменчивости, на которой базируется естественный отбор. По оценкам генетиков, около 30% человеческого генома представлено транспозонами. Транспозоны могут вносить и другие изменения в геном, обеспечивая передачу по наследству, например, сопротивляемость к антибиотикам или другие полезные (или не очень) качества.

Детальное понимание работы транспозонов и ферментов, их обслуживающих, должно помочь ученым в разработке «генетического лекарства» от СПИДа, так как этот вирус использует схожие механизмы для встраивания своего генетического кода в человеческую ДНК. Транспозазы (ферменты, работающие с блуждающими генами) и интегразы (вирусные ферменты) оказались весьма близки по строению. Теперь биохимики изучают пять различных транспозаз и интеграз, чтобы детально изучить механизм их действия и найти средства, могущие препятствующие проникновению генного материала вируса в клетку.

О транспозонах заговорили в 1951 году, когда генетик Барбара МакКлинток предположила их существование для объяснения некоторых генетических механизмов, наблюдавшихся ею в зерне. Генетики не оценили ее теорию, и Нобелевскую премию Барбара получила только в 1983 году. Тем не менее, за прошедшие полвека генетики добились серьезных успехов в понимании механизмов работы блуждающих генов.

Однако предшествующие исследования ферментов, обслуживающих транспозоны, были сконцентрированы на изучении той части фермента, которая отвечает за «вырезание» фрагмента из спирали ДНК. И только сейчас, после рентгенографического изучения комплекса ДНК-фермент и построения трехмерной модели его молекулы, ученые могут достаточно ясно понять механизмы его работы на молекулярном уровне.

Готовясь к переносу, одна молекула фермента связывается со специфической областью на одном конце транспозона, а вторая «заходит сзади» – проделывает то же самое с противоположной стороны. Молекула фермента неспособна разорвать молекулу ДНК в месте своего крепления. Поэтому, когда полученный комплекс «закольцовывается» и две молекулы транспозазы соединяются, они производят «надрез» в месте крепления другой молекулы. Затем получившийся комплекс фермента и транспозона переходит в свободное плавание до тех пор, пока не найдет себе новое место в структуре ДНК.

Другие записи

10.06.2016. Одинаково ли близнецы учатся в школе?
О многих закономерностях наследственности может рассказать ученым изучение близнецов. Логично предположить, что близнецы, развившиеся из одной материнской яйцеклетки и имеющие соответственно одинаковый…
10.06.2016. Найден «ген склероза»
Ген, ответственный за ослабление памяти у людей преклонного возраста, удалось недавно обнаружить исследователям из лондонского института Вольфсона, сообщает ВВС. Специалисты убеждены, что лекарственное…
10.06.2016. Найден ген старения
Старение обусловлено не одним, а многими сложными процессами, протекающими в организме. Поэтому найти один-единственный ген, от которого зависит старение, вряд ли удастся – скорее это будет несколько генов.…
10.06.2016. Микробы и растения: молекулярный диалог в андеграунде
Мы многое не умеем или не можем делать в одиночку – достаточно вспомнить пустой холодильник или гору белья во время отсутствия жены, чтобы понять, что одинокое существование не дает возможности полностью…
10.06.2016. Медицина на пороге революции
Наступающий ХХI век многие провозглашают веком генетики. Современную генетику, изучающую химические механизмы наследственности, называют молекулярной геномикой. Сегодня молекулярная геномика – приоритетное…